Go back to listing compounds

pc(18:1(9z)/18:1(9z))


Name(s) pc(18:1(9z)/18:1(9z))
Scientific name(s)
Formula C44H84NO8P
Molecular mass 786.1134
IUPAC name (2-{[2,3-bis(octadec-9-enoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium
INCHI InChI=1S/C44H84NO8P/c1-6-8-10-12-14-16-18-20-22-24-26-28-30-32-34-36-43(46)50-40-42(41-52-54(48,49)51-39-38-45(3,4)5)53-44(47)37-35-33-31-29-27-25-23-21-19-17-15-13-11-9-7-2/h20-23,42H,6-19,24-41H2,1-5H3
SMILE CCCCCCCCC=CCCCCCCCC(=O)OCC(COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC
CAS ID 68737-67-7
PubChem ID 6437081
DrugBank ID Not available
CHEBI ID Not available
Description PC(18:1(9Z)/18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(9Z)/18:1(9Z)), in particular, consists of two chains of oleic acid at the C-1 and C-2 positions. The oleic acid moieties are derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Dioleoylphosphatidylcholine is found in human platelets and red blood cells, in mitochondria from skeletal muscle, lung, umbilical artery and vein endothelial cells (PMID: 15351277, 7138900, 2351875, 4046747, 2755318). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. [HMDB]